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Abstract

Previous studies have highlighted the severity of detrimental effects for life on Earth
after an assumed regionally limited nuclear war. These effects are caused by climatic,
chemical and radiative changes persisting for up to one decade. However, so far only
a very limited number of climate model simulations have been performed, giving rise5

to the question how realistic previous computations have been. This study uses the
coupled chemistry climate model (CCM) SOCOL, which belongs to a different family
of CCMs than previously used, to investigate the consequences of such a hypothetical
nuclear conflict. In accordance with previous studies, the present work assumes a sce-
nario of a nuclear conflict between India and Pakistan, each applying 50 warheads10

with an individual blasting power of 15 kt (“Hiroshima size”) against the major popula-
tion centers, resulting in the emission of tiny soot particles, which are generated in the
firestorms expected in the aftermath of the detonations. Substantial uncertainties re-
lated to the calculation of likely soot emissions, particularly concerning assumptions of
target fuel loading and targeting of weapons, have been addressed by simulating sev-15

eral scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with
respect to solar radiation leads to a tremendous self-lofting of the soot particles into the
strato- and mesosphere, where they remain for several years. Consequently, the model
suggests Earth’s surface temperatures to drop by several degrees Celsius due to the
shielding of solar irradiance by the soot, indicating a major global cooling. In addition,20

there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, de-
pending on the magnitude of the initial soot release. Extreme cold spells associated
with massive sea ice formation are found during Northern Hemisphere winter, which
expose the continental land masses of Northern America and Eurasia to chilling cold-
ness. In the stratosphere, the strong heating leads to an acceleration of catalytic ozone25

loss and, consequently, to enhancements of UV radiation at the ground. In contrast to
surface temperature and precipitation changes, which show a linear dependence to the
soot burden, there is a saturation effect with respect to stratospheric ozone chemistry.
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Soot emissions of 5 Tg lead to an ozone column reduction of almost 50 % in north-
ern high latitudes, while emitting 12 Tg only increases ozone loss by a further 10 %.
In summary, this study, though using a different chemistry climate model, corroborates
the previous investigations with respect to the atmospheric impacts. In addition to these
persistent effects, the present study draws attention to episodically cold phases, which5

would likely add to the severity of human harm worldwide. The best insurance against
such a catastrophic development would be the delegitimization of nuclear weapons.

1 Introduction

Recent studies by Robock et al. (2007a) and Mills et al. (2008) have shown that even
a regionally limited nuclear war, for example between India and Pakistan, could have10

detrimental effects on climate and on the chemical composition of the atmosphere
throughout the world. These investigations build on Toon et al. (2007), who assessed
the amount of smoke emissions from urban firestroms after the detonation of rela-
tively low-yield nuclear warheads in modern megacities. These soot particles would
encounter rapid lifting into the upper troposphere due to pyro-convection (Toon et al.,15

2007), and would subsequently rise higher up into the stratosphere due to self-lofting
(Robock et al., 2007a). Once in the stratosphere, these particles might induce long-
lasting, global climate changes due to the shielding of solar radiation. There is evidence
that these climatic changes could cause a significant decline in global food production,
potentially triggering a famine of historic dimensions (Robock et al., 2007a; Xia and20

Robock, 2013). While Robock et al. (2007a) focused on climate effects, using the gen-
eral circulation model (GCM) ModelE from NASA GISS coupled to a full ocean model,
Mills et al. (2008) examined the consequences of the soot emissions for stratospheric
chemistry and ozone, using the coupled chemistry-climate model WACCM3, but with-
out an ocean model. The basic objective of the present study is to provide an inde-25

pendent estimate of the climate and chemistry effects of a regional nuclear war. To this
end we apply the coupled chemistry-climate model SOCOL3, which is based on the
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atmospheric middle atmosphere version of the ECHAM5 GCM, coupled with a mixed-
layer ocean model. By repeating the scenarios of the earlier studies, we aim to provide
important information on the robustness of these previous results. The present study
was carried out in two steps: (1) a SOCOL3 climate model run was performed, where
the soot distribution in the atmosphere was prescribed to match the four dimensional5

(longitude, latitude, altitude, time) soot fields from the earlier chemistry climate model
runs performed by Mills et al. (2008). (2) Several SOCOL3 runs were carried out, with
different amounts of soot injected at the same location as in the study of Mills et al.
(2008), and in which the soot particles were subsequently transported according to
the simulated dynamical fields in a radiatively fully coupled manner. The rationale be-10

hind this two step approach was to evaluate the role of transport and radiative effects
separately.

The following section provides a description of the applied soot emission scenarios.
The model configuration and the experimental set-up are described in Sect. 3. Sec-
tion 4 presents the modeled soot distributions. Furthermore, the effects of the emitted15

soot particles on stratospheric and tropospheric temperatures, the hydrological cycle,
and ozone chemistry are discussed. Concluding remarks are given in Sect. 5.

2 Scenario

Toon et al. (2007) assessed the potential damage and soot production of a regional
nuclear conflict involving 100 Hiroshima-size (15 kt) warheads. It was assumed that20

those low-yield weapons were targeted on city centers. To determine smoke emissions
resulting from urban fires, Toon et al. (2007) used a direct relationship between the
population density and the quantity of burnable fuel. Depending on the region and
the involved nations, an attack on a single country with 50 weapons of the above
mentioned size could release between 1 and 5 Tg of black carbon particles (soot)25

into the upper troposphere due to lofting by pyro-convection above large fires. The
strong lofting of super-heated plumes has been confirmed using a three-dimensional
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cloud-scale model with interactive dynamics, microphysics, and radiative transfer, al-
though a nested-grid mesoscale model would be desirable to close the gap between
the large-scale transport, the plume-scale dynamics, and the smoke particle micro-
physics (E. J. Jensen, private communication, 2013). For a regional conflict between
India and Pakistan, Toon et al. (2007) derived an estimate of ≈6.6 Tg of soot (their5

Table 13). Turco et al. (1990) and Toon et al. (2007) estimated an initial removal of soot
in black rain in the range of 20 %, i.e. about 80 % of the soot are lifted pyroconvectively
into the stratosphere. This low rainout efficiency implies inefficient removal of small,
fresh smoke particles in the pyrocumulus systems driven by an urban fire. Observa-
tions of such convection associated with forest fires (Fromm et al., 2005) support this10

notion. In addition to the initial removal in black rain, Mills et al. (2008) assumed a fur-
ther 20 % rain-out of soot particles within the first 10 days after the soot emission. The
assumed scenario is summarized in Table 1.

There are many uncertainties in this scenario. For example, the estimated per capita
fuel burden is based on surveys of fuel types and loadings per person in devel-15

oped countries instead of developing nations. According to detailed estimates by Toon
et al. (2007), the fuel loading in developing countries might be 2–3 times lower. Con-
versely, more weapons and/or larger yield weapons might be involved in such a conflict
(P. Sidhu, private communication, 2011). Toon et al. (2007) also assumed that only the
most populous cities would be targeted, however it is not clear if this would actually20

be the case. To deal with these uncertainties we performed several simulations with
total soot emissions ranging from 1 to 12 Tg. The lower limit of 1 Tg was also chosen
to be comparable with the studies by Robock et al. (2007a) and Mills et al. (2008). Our
12 Tg scenario is above the highest estimates by Toon et al. (2007) and was chosen to
investigate potential saturation effects or tipping points.25
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3 Model configuration and experimental set-up

3.1 The chemistry-climate model SOCOL3

The third generation of the coupled chemistry-climate model SOCOL (modeling tools
for studies of SOlar Climate Ozone Links, Stenke et al., 2012) is based on the mid-
dle atmosphere version of the general circulation model MA-ECHAM5 (e.g. Roeckner5

et al., 2006; Manzini et al., 2006) and a modified version of the chemistry-transport
model MEZON (Model for Evaluation of oZONe trends, Rozanov et al., 1999). The
GCM and the chemistry module are interactively coupled via the 3-dimensional tem-
perature field and the radiative forcing induced by water vapor, carbon dioxide, ozone,
methane, nitrous oxide, and chlorofluorocarbons (CFCs). Water vapor, cloud variables10

and chemical species are advected by a flux-based mass-conserving and shape-
preserving transport scheme (Lin and Rood, 1996). The chemistry scheme is called
every 2 h, making SOCOL computationally very efficient. The chemistry scheme incor-
porates a complete representation of stratospheric and mesospheric chemistry as well
as a tropospheric background chemistry. The model includes 41 chemical species of15

the oxygen, hydrogen, nitrogen, carbon, chlorine and bromine groups, which are de-
termined by 140 gas-phase reactions, 46 photolysis reactions and 16 heterogeneous
reactions in/on aqueous sulfuric acid aerosols and three types of Polar Stratospheric
Clouds (PSC) (supercooled ternary solution (STS) droplets, water ice and nitric acid
trihydrate (NAT)). In the vertical dimension, the model has 39 levels, spanning the at-20

mosphere from the surface up to 0.01 hPa (∼80 km). For the present study the model
was run at a spectral horizontal resolution of T42, which corresponds to a Gaussian
transform grid size of approximately 2.8◦ ×2.8◦. The dynamical time step is 5 min. A de-
tailed model description and evaluation of SOCOL3 is given by Stenke et al. (2012).

The atmospheric model is connected to a mixed-layer ocean (MLO) with a water col-25

umn fixed depth of 50 m and a thermodynamic sea ice module. This model configura-
tion does not consider active ocean dynamics, but captures the shorter term response
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of the ocean’s surface temperature to the atmosphere. The heat budget of the oceanic
mixed-layer is described by

Cm
∂Tm

∂t
= H −Q, (1)

where Tm denotes the temperature of the mixed-layer, which substitutes the sea
surface temperature in the model version without ocean. Cm and H describe the effec-5

tive heat capacity of the mixed-layer and the net heat flux at the atmosphere–ocean
surface, respectively. The oceanic heat transport Q (also called flux correction term)
is intended to compensate for the energy transport by ocean currents, which is not
simulated by the MLO model itself (Steppuhn et al., 2006). The flux correction is calcu-
lated from a SOCOL simulation with prescribed sea surface temperatures representing10

present-day conditions.
It should be noted that the MLO (slab ocean) model does not include feedbacks with

the deep ocean. However, Robock et al. (2007a) conducted several climate simulations
with different soot emission scenarios using both a fully coupled ocean model and
a MLO model, and found very similar results. In the mixed-layer simulations the cooling15

of the sea surface in the first year was found to be slower than in the full ocean model.
The upper model layers of the full ocean model are thinner than in the MLO model
and, therefore, respond more quickly to atmospheric perturbations. The further cooling
in the mixed-layer model, however, was more pronounced and more persistent than in
the full ocean model since the interaction with the deep ocean tends to dampen the20

surface response.

3.2 Experimental set-up

With this model configuration, we conducted a 30 yr time-slice control experiment with-
out soot aerosol and several 10 yr simulations including soot emissions, assuming
present-day atmospheric conditions. Following Robock et al. (2007a) and Mills et al.25
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(2008), we injected the soot in all simulations into a set of grid boxes at 30◦ N, 70◦ E, that
represent the upper troposphere between 300 and 150 hPa above the India–Pakistan
region, on 15 May. The assumed injection height mimics the lofting effect of strong
pyro-convection over large fires within the first few hours of the detonations, which can-
not be resolved by the global climate model. In total we performed a set of 7 simulations5

with different soot emission scenarios. The total mass of emitted soot ranges between
1 and 12 Tg, addressing the uncertainties in the soot emission estimates described
above. An overview of these model runs is given in Table 2.

To calculate the radiative effect of the soot burden, the optical properties (absorption
coefficients, single scattering albedos and extinctions) for a single soot particle with10

a diameter of either 100 nm or 200 nm, respectively, were precalculated based on the
OPAC data set (Hess et al., 1998), assuming a monodisperse population of soot par-
ticles. In the model simulations, these values were then scaled by the actual number
density of soot particles.

As a first step, a 10 yr model integration was performed, in which the 4-dimensional15

soot distribution simulated with the WACCM3 model (Mills et al., 2008) was used as in-
put data for the SOCOL3 model (model experiment “Prescribed”). For that purpose the
4-D soot distribution was interpolated to the SOCOL3 grid and updated every transport
time step. Within this model experiment, the prescribed soot caused a radiative forc-
ing resulting in changes of atmospheric temperatures and circulation patterns, which20

will provide the first evidence whether the models are consistent with respect to their
radiation scheme (in particular the heating rates). However, as the prescribed soot
distribution follows WACCM3, it may be inconsistent with the simulated transport in
SOCOL.

In a second step, we conducted a set of model simulations (“Exp1”,. . ., “Exp12”), in25

which the soot particles were freely transported according to the modeled circulation
in SOCOL, i.e. changes in atmospheric dynamics caused by the soot radiative forcing
directly affected the transport of the soot particles. The simulation Exp5_200, where
200 nm soot particles were used instead of the 100 nm particles used in the other
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simulations, serves as a sensitivity test to investigate the effects of the particle size.
Since SOCOL does not include an aerosol module, the soot particles were treated like
a gaseous trace species and transported with the operational advection scheme. In
addition to the large-scale transport, sedimentation of the soot particles was calculated
every time step. Tropospheric removal of soot by precipitation was also implemented,5

with the scavenging rate being set equal to that of HNO3 in SOCOL, which is generally
represented as fully soluble in clouds and precipitation within atmospheric models. For
HNO3 a constant removal rate of 4×10−6 s−1 is assumed, i.e. every two hours 2.8 %
of the tropospheric HNO3 is removed. This implicitly assumes that soot particles in
the troposphere readily acquire an inorganic coating. This approximation represents10

an upper bound for wet removal in the troposphere, which may result in an overall too
rapid loss of soot in the very early days after the warhead detonations.

Furthermore, coagulation of the soot particles was not considered in the model sim-
ulations, because the impact of coagulation on stratospheric soot concentrations, and
hence their lifetime and radiative effects, is expected to be small, given the small strato-15

spheric particle densities of about 10−1 cm−3 (Robock et al., 2007a). In addition, coag-
ulation of soot particles, if it occurrs, leads to chain-shaped particles with sedimentation
velocities similar to the unaggregated particles.

Deposition of soot particles on snow-covered surfaces and sea ice has the poten-
tial to decrease the albedo and partially compensate the surface cooling, a feedback20

effect that is not considered in the present model simulations. However, Vogelmann
et al. (1988) showed that a sufficient amount of insolation and a correspondingly clean
atmosphere would be necessary for this effect to become important. By the time the at-
mosphere would be clean enough again, fresh snow would have covered the deposited
soot particles, and therefore this effect is expected to be small.25

Our analysis is based on only one representation of each scenarion, i.e. ensemble
runs were not considered. At least for the > 5 Tg emission scenarios we expect that
the model response to such a strong forcing is significantly larger than the natural
variations of the chaotic weather system (Robock et al., 2007a).
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Finally, it should be noted that the present study focuses only on the climatic and
chemistry effects of the soot emissions. The spread of radionuclides and radioactive
contamination are not part of this study.

4 Results

4.1 Soot distribution5

The global atmospheric soot burden calculated by SOCOL, as a function of time, is
shown in Fig. 1. Following the studies of Robock et al. (2007a) and Mills et al. (2008),
the emission is assumed to take place on 15 May. For all of the runs, the burdens
follow the same basic behavior, with a rapid loss of mass within the first 3–4 days of the
emission, when the bulk of the soot is still in the troposphere (where wet scavenging by10

precipitation, the only loss mechanism accounted for, is active). Within the first 4 days,
between 27 % (Exp1) and 33 % (Exp12) of the soot is removed due to tropospheric rain
out (Fig. 1a). Mills et al. (2008) simulated a slightly lower inital soot loss of aproximately
19 % for their 5 Tg-case, but as mentioned in Sect. 3.2, our wet removal procedure
might be regarded as upper bound. The remaining aerosol particles are heated by the15

absortion of solar radiation, which in turn leads to a heating of the surrounding air and
a rapid lofting of the soot particles into the stratosphere and higher. In Exp5, the soot
particles are lofted up to the stratopause within 3 days, and reach the model top near
80 km after 5 days. It should be noted, though, that the vertical spreading of the bulk
of the soot aerosol is not limited by the height of the model top. Figure 2 compares the20

vertical soot distribution for several scenarios after 15 days. Once transported into the
stratosphere, the soot particles rapidly spread horizontally and are transported to the
Southern Hemisphere. Further lofting is prevented by gravitational settling in the low
ambient air density, keeping most of the particles below the stratopause. Mills et al.
(2008) also simulated a maximum altitude of 80 km with the high-top model WACCM325

(model top at 4.5×10−6 hPa (∼145 km)). Overall, the soot distribution in SOCOL3 and
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the WACCM3 model, shown by Mills et al. (2008), look very similar, with WACCM3
showing less horizontal spreading.

Stratospheric soot particles have long residence times. The e-folding time of the at-
mospheric soot burden (after the initial rain out) ranges between 2.8 yr for Exp1 and
5.1 yr for Exp12 (Fig. 1b), which is shorter than in the studies of Robock et al. (2007a)5

(6 yr for the 5 Tg-case) and Mills et al. (2008), indicating a faster Brewer–Dobson-
Circulation in the SOCOL3 model, which is consistent with the general behavior found
for ECHAM-based models in an international model intercomparison and validation ini-
tiative (CCMVal, 2010). The self-lofting effect of the emitted black carbon intensifies
with the amount of initially emitted soot, i.e. the more soot is emitted, the higher the10

fraction of soot transported high into the stratosphere and the longer the e-folding time.
Saturation effects as found by Robock et al. (2007b) for a 150 Tg case, representing
conditions during a global nuclear war, where the complete blocking of sun light by soot
particles higher up limits the lofting of further soot particles from lower down, are not
visible in our model simulations for a regional conflict. The gravitational removal of the15

200 nm soot particles in Exp5_200 is slightly faster than in Exp5_100, as expected,
however the differences are small. Therefore, in this size range, the particle diameter
is not critical for the atmospheric lifetime of the soot. The removal of these small, ab-
sorbing and thus heating particles is very slow, which highlights the general danger
connected with emitting such particles to the stratosphere.20

4.2 Temperature changes

In this section we focus on the heating of the stratosphere and mesosphere brought
about by the absorption of solar radiation by the soot particles, and also on the cooling
at the Earth’s surface, resulting from the reduced amounts of incoming radiation below
the absorbing soot layer.25

Stratospheric and mesospheric heating. Figure 3 shows the global mean atmo-
spheric temperature change resulting from various soot emissions as a function of
altitude and time. The temperature evolution of the prescribed experiment (Fig. 3b) is
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extremely similar to the results of Robock et al. (2007a, their Fig. 1c) as well as Mills
et al. (2008, their Fig. 5c). From this plot, it is obvious that the soot has an almost imme-
diate effect on the whole atmospheric column. In the very beginning of the simulation,
the model shows a small cooling of the atmospheric layers above the soot cloud due to
the blocking of outgoing infrared radiation. After 3 to 4 days, the soot has been trans-5

ported to the top of the model atmosphere, and the resultant heating has lead to an
increase in atmospheric temperatures of 70–100 K between approximately 45–80 km
altitude. Less heating occurs at lower altitudes because the soot prevents a part of the
sunlight from reaching the lower altitudes. Below about 12 km, average atmospheric
temperatures are up to 3 K lower than in the control run due to the influence of the10

soot. Figure 3c shows the results from Exp5_100, i.e. a free-running simulation with
5 Tg soot emitted and conditions as assumed by Robock et al. (2007a). Despite the
lower soot loadings shown in Fig. 1, the results are qualitatively very similar to those
of Robock et al. (2007a), with initial heating of between 70 K and 100 K in the upper
stratosphere and mesosphere, and heating of more than 30 K lasting around one to15

two years at altitudes above approximately 30 km. Again, the size assumed for the soot
plays a minor role in determining the results, with runs Exp5_100 and Exp5_200 pro-
ducing very similar atmospheric temperature changes, although the return to normal
temperatures is slightly slower in Exp5_100 (not shown). As expected, the lower soot
burdens in Exp1 (Fig. 3a) and Exp2 (not shown) result in substantially smaller strato-20

spheric temperature changes. For Exp1, peak heating is of the order of 10–20 K, and
temperatures recover again after around three years. For model run Exp12 (Fig. 3d),
a maximum temperature change of more than 110 K immediately after the soot injec-
tion is found, and even 10 yr later stratospheric temperatures are still not back to nor-
mal conditions. The semiannual temperature oscillations in the upper stratosphere and25

mesosphere are related to a semiannual rising and sinking of the soot particles with
the secondary meridional circulation during the solstice in each hemisphere (Robock
et al., 2007a).
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After 3 to 4 yr, depending on the soot scenario, the upper stratosphere and meso-
sphere both show a cooling signal, which is most pronounced in the uppermost model
layers. This cooling is caused by a combination of different effects: first of all, the
beginning removal of soot particles from the mesosphere to lower altitudes via the
Brewer-Dobson-Circulation results in a reduced soot heating. As will be discussed in5

Sect. 4.5, the emitted soot leads to strong ozone deleption, and, as a consequence,
less shortwave heating. Finally, higher tropical tropopause temperatures cause a sub-
stantial increase in strato- and mesospheric water vapor concentrations (up to +80 %
in Exp5_100 and up to +200 % in Exp12), which lead to a cooling due to increased
radiative emission by the water vapor molecules. The occurrence of the maximum wa-10

ter vapor changes agrees with the maximum cooling, pointing to longwave water vapor
cooling as the dominant cause of the cooling.

Global tropospheric cooling. Due to the shielding of solar insolation by the emit-
ted soot aerosols, global mean surface temperatures are subject to a more or less
pronounced decrease, depending on emission scenario (Fig. 4, upper panel). For the15

5 Tg-cases, peak surface temperature changes of about −1.0 to −1.5 K appear about
3 yr after the emission. Normal surface temperatures are approached only after approx-
imately eight years. Again, the assumed particle size plays a minor role, with Exp5_100
and Exp5_200 producing very similar surface temperature changes. In contrast, when
soot emissions are restricted to 1 Tg, there is no significant reduction in surface tem-20

peratures, with the deviation from the control run being within the bounds of normal
variability. This lack in response in the surface temperatures is surprising at first sight.
However, as the soot burden in the stratosphere is weaker by a factor of 4–5 in Exp1
compared to Exp5_100 (see Fig. 1), the blocking of sunlight arriving at the ground is
lowered by approximately the same factor. This reduces the 1.0–1.5 K cooling in the25

5 Tg cases to only 0.2 K, which is well within natural variability. To put this response
into perspective: during the Little Ice Age (1500–1850) global average temperatures
dropped about 0.5 K below normal conditions, and the Tambora eruption in 1815 (In-
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donesia), the largest volcanic eruption within the past 500 yr, also led to a global cooling
of about 0.5 K for about one year.

The temperature change at the Earth’s surface averaged over the more densely pop-
ulated latitudes of the Northern Hemisphere (1.4◦ N and 60◦ N) as a function of time is
illustrated in the lower panel of Fig. 4. The overall surface temperature changes are5

comparable to the global average, but an interesting set of features apparent in the
northern hemispheric temperature changes are the regular, strongly negative temper-
ature excursions in late winter and early spring (January to April), visible in all simula-
tions except Exp1. For Exp12 temperature changes of up to −4 K are simulated. Such
conditions are reminiscent of the global war nuclear winter scenarios (Robock et al.,10

2007b).
Regional cold spells. Investigations of a potential nuclear famine following a regional

nuclear war require knowledge of expected regional temperature changes. Figures 5
and 6 depict surface temperature changes averaged for June, July, and August, and
for December, January, and February of the second year after the soot injection, re-15

spectively. Extensive cooling of several degrees over the continental land masses is
clearly visible, i.e. even a regionally limited nuclear war would have large global cli-
matic impacts. As shown by Robock et al. (2007a) this massive continental cooling
shortens the length of the growing season (period with frost-free days) dramatically,
in both hemispheres, for several years. For the first year, Robock et al. (2007a, their20

Fig. 11) calculated a reduction of the growing season of more than 20 days over large
parts of the Northern Hemisphere. In comparison, old newspaper articles report that in
1816, the year without summer after the Tambora eruption, sweet corn did not ripen in
a large area of the US East Coast (Hamilton, 1986), and Central Europe suffered from
a high degree of starvation (Post, 1974). Growing season temperatures in 1816 were25

1–3 K below average in large parts of Europe (e.g. Trigo et al., 2009; Auchmann et al.,
2012). Exp5_100 shows temperatures reduced by up to 2 K in the American corn belt
and reductions by up to 5 K in Central Europe during the growing season (Fig. 5).
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Simulations Prescribed, Exp5_100, and Exp5_200 (not shown), although qualita-
tively similar, show differing temperature changes in some regions, e.g. in the Amer-
ican Midwest, where the runs Prescribed and Exp5_200 produce a warming by 2 K,
whereas run Exp5_100 causes cooling. Given the similarity of these runs in terms of
radiative forcing by the soot particles, these differences reflect the natural variability5

of the climate system in response to the aerosol forcing. Several model runs, except
Exp12, indicate a warm response in Northern Eurasia in winter (Fig. 6), which is re-
lated to a strong positive mode of the Arctic Oscillation resulting in an advection of
warm oceanic air masses over the winter continents (Robock et al., 2007a). This phe-
nomenon is known from volcanic eruptions (Robock, 2000; Fischer et al., 2007). Table 310

compares temperature changes during the first winter after the soot emission, for dif-
ferent regions, with results by Robock et al. (2007a, their Fig. 6). For the American corn
belt SOCOL tends to simulate larger coolings, while both studies show similar results
for Western Europe.

Another prominent feature apparent in the surface temperature changes for JJA is15

the warming pattern over large areas of Antarctica (Fig. 5). This warming is related
to changes in the near surface circulation pattern in southern mid and high latitudes:
while the control simulation shows zonal (westerly) winds that circle Antarctica, the soot
runs are characterized by southerly flow over the South-Eastern Pacific, leading to the
advection of warm air masses from low latitudes towards the region westwards of the20

Antarctic Peninsula.

4.3 Sea ice coverage

Figure 7 shows the time series of sea ice cover changes for the Northern and Southern
Hemisphere. Both hemispheres reveal an earlier onset of sea ice formation in autumn
as indicated by the peaks, as well as larger sea ice coverage throughout the year. Inter-25

estingly, the time series for the Southern Hemisphere shows unexpectedly small and
large sea ice changes for all runs in year 4 and 10 after the soot emissions, respec-
tively. These variations are related to an exceptional high and low sea ice coverage
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of the Weddell sea during the respective years in the CTRL simulation (not shown).
In the Northern Hemisphere the sea ice increase occurs mainly in the North Pacific
between Kamchatka and Alaska (Fig. 8). Smaller increases are also found in the North
Atlantic south of Greenland. In the Southern Hemisphere the sea ice increase is most
pronounced in the southern Atlantic and Indian Ocean (Fig. 9).5

As mentioned in Sect. 3.1, the mixed-layer ocean model tends to simulate a more
persistent cooling of the sea surface than a full ocean model (Robock et al., 2007a).
Thus, one might speculate that the simulated sea ice response is also too pronounced
and too persistent. Climate model simulations by Miller et al. (2012), together with proxy
climate reconstructions, suggest that a series of explosive volcanic eruptions at a time10

of reduced solar irradiance triggered the onset of the Little Ice Age between 1275 and
1300 AD. The reduced solar insolation after the volcanic eruptions of up to −30 Wm−2

(Miller et al., 2012, their Fig. 3) allowed Arctic sea ice to expand, resulting in a self-
sustaining sea-ice/ocean feedback in the North Atlantic and persistent cold summers.
Stenchikov et al. (2009) investigated the seasonal to multidecadal response of the15

ocean to the eruption of Tambora in 1815 and Pinatubo in 1991 by using a coupled
climate model, and found a sea ice response on a decadal time scale. For the Tambora
case, which is comparable to the 5 Tg cases in terms of reduced solar radiation at
the surface, they found an increase in northern hemispheric maximum sea ice extent
of 5 %. Interestingly, the minimum sea ice extent during the warm season showed20

a higher sensitivity to volcanic forcing than the maximum sea ice extent. Observational
evidence for such model results is hardly available. Ships’ log-books provide at least
some information about the years before and after the Tambora eruption. The period
between 1810 and 1825 was characterised by consistently cold summers and large
sea ice extent. However, records of Royal Navy expeditions to the Arctic show that in25

the Greenland Sea the summers of 1816 and 1817 were clearly warmer and showed
less sea ice. Low sea ice coverage was also reported in Lancaster Sound in 1819 and
1820 (Brohan et al., 2010). Other ships’ log-books reported an exceptionally late sea
ice dispersal in Hudson Bay and Hudson strait in summer 1816, with large impacts
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on shipping routes, and increased sea ice as far south as 40◦ N, indicating unusual
atmospheric circulation patterns over this region (Catchpole and Faurer, 1985).

4.4 Precipitation changes

The cooling of the Earth’s surface leads to a reduced evapotranspiration and a weak-
ening of the global hydrological cycle. The global averaged changes in precipitation5

are shown in Fig. 10. The largest changes in global precipitation occur between 2 and
4 yr after the soot injection for the runs with soot loadings of 5 Tg or larger, following
the temperature changes at the surface (Fig. 4). For the 5 Tg simulations, precipitation
is reduced by up to 10 % (Fig. 11), which is in excellent agreement with Robock et al.
(2007a, their Fig. 3). In the 12 Tg run, precipitation is reduced by up to 20 % (Fig. 11).10

For the low emission scenarios, Exp1 and Exp2, global precipitation changes are below
5 %. In both of these two simulations, the hydrological cycle quickly returns to normal
conditions, while it takes 8 to 10 yr for the medium scenarios, and up to 14 yr for Exp12
(not shown). The weakening of the global hydrological cycle increases almost linearly
with the initial soot burden (Fig. 11), i.e. our model simulations do not indicate any sat-15

uration effects such as those found by Robock et al. (2007b) for soot injections of 50 Tg
and 150 Tg.

Figures 12 and 13 show maps of precipitation changes averaged for June, July, and
August, and for December, January, and February of the second year after the soot
injection, respectively. The change patterns are very similar for all soot emission sce-20

narios. The most pronounced changes occur in the Intertropical Convergence Zone
(ITCZ). Further substantial changes are found over the Asian region, showing a weak-
ening of the summer monsoon (Fig. 12). In contrast to Robock et al. (2007a), our model
simulations do not indicate an increase of precipitation over the Sahel zone of Africa.
Robock et al. (2007a) interpreted these changes as a weakening of the Hadley Cell.25

A weakening of the Asian summer monsoon circulation is also found after major tropical
volcanic eruptions in model simulations (Joseph and Zeng, 2011) and tree-ring-based
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reconstructions (Anchukaitis et al., 2010). It is interpreted as a consequence of the
weaker land-sea thermal contrast (Joseph and Zeng, 2011).

4.5 Ozone loss and UV changes

The massively increased stratospheric temperatures, caused by the soot, lead to the
acceleration of chemical reaction cycles leading to ozone loss, as described by Mills5

et al. (2008). Furthermore, higher temperatures at the tropical tropopause and an en-
hanced methane oxidation result in substantially increased stratospheric water vapor
concentrations, which leads to additional ozone loss. In Exp1, lower stratospheric wa-
ter vapor increases by up to 50 %, in Exp5_100 lower stratospheric H2O more than
doubles (not shown). The changes in total column ozone in the soot experiments with10

respect to the control run are shown in Fig. 14. At low latitudes there are no significant
ozone changes for the two low soot cases, Exp1 and Exp2, while for the 5 Tg simu-
lations the ozone loss is around 5–10 %, and the initial recovery sets in after around
5 yr. Exp7 and Exp12 show tropical ozone reductions of up to 30 %. At higher latitudes,
ozone loss is more pronounced. The mid-range (5 Tg) scenarios show 40 to 60 % less15

total ozone polewards of 60◦. Peak values of up to −70 % are found in polar regions for
the first 5 yr of Exp12. Globally, in the two years following the soot emissions, ozone
is very low, approaching levels of around 220 DU for the 5, 7, and 12 Tg simulations,
which are levels typically associated with ozone hole conditions (Fig. 15). The annual
mean, global mean total ozone loss for the second year ranges between 5 % (Exp1)20

and 28 % (Exp12), which is much more than the 2002–2009 global mean total ozone
loss of 3.5 % (relative to 1964–1980 averages) due to anthropogenic ODS emissions
(Douglass et al., 2011). As may be expected, the ozone loss increases with the atmo-
spheric soot burden. In contrast to the surface temperature and precipitation changes,
there is a saturation effect with respect to total column ozone losses. For the emis-25

sion scenarios of more than 2 Tg, additional soot mass leads to progressively less of
an additional O3 loss. In northern mid to high latitudes, the prescribed soot leads to
almost similar total ozone values as the 12 Tg case. The black dashed line in Fig. 15
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shows results for the 5 Tg case by Mills et al. (2008) for comparison. At southern high
latitudes their total column ozone is as low as in Exp12, however, total column ozone in
this region is generally lower in WACCM3 than in SOCOL (compare Mills et al., 2008,
their Fig. 3).

The strong warming of the stratosphere has a direct impact on chemical reactions5

rates. Mills et al. (2008) identified the Chapman (odd-oxygen) and the odd-nitrogen
cycles as mainly responsible for the ozone loss after the soot injection. Both cycles
are highly temperature-dependent and become faster with increasing temperatures
(kO+O3

= 8×10−12 ·exp(−2.060×103 · T−1), kNO2+O = 5.1×10−12 ·exp(2.1×102 · T−1)),
however, the rate of increase of the NOx loss cycle decelerates with higher temper-10

atures. Furthermore, as also mentioned by Mills et al. (2008), the depletion of ozone
triggers a “self-healing” effect associated with more UV radiation penetrating deeper
into the atmosphere and an enhanced photolysis of O2, which partly compensates the
ozone loss.

As obvious from Fig. 14, all simulations show an increase in tropical total ozone, in15

the case of simulations where more than 2 Tg of soot was emitted, this increase takes
place in the second half of the simulation. This is related to an ozone increase in the
tropical uppermost troposphere and lower stratosphere caused by the deeper penetra-
tion of UV radiation in the atmosphere and a shift of NO into NO2 via the reactions with
HO2 and CH3O2. For the simulations with more than 2 Tg of soot emissions, ozone loss20

in atmospheric levels above approximately 30 hPa dominates the ozone column in the
first years of the simulation. Later on, enhanced ozone levels in the lower stratosphere
overcompensate the diminishing ozone depletion higher up.

The ozone loss affects the amount of solar UV radiation reaching the Earth’s surface.
The spectral surface ultraviolet radiation in the wavelength range 280 to 400 nm was25

calculated with the radiative transfer model libRadTran (Mayer and Kylling, 2005), using
the vertical profiles of ozone mixing ratio and soot particle concentrations, which are
the most significant variables affecting the radiation transfer through the atmosphere.
For the soot particles, the scattering and extinction properties were calculated using
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MIE code from libRadTran assuming that they consist of pure carbon and have a fixed
size of 100 nm as described in a previous section. Due to the extensive computing
time, the calculations were limited to the CTRL and Exp5_100 runs for the first five
and a half years of the experiment. Figure 16 shows the zonally averaged erythemally
weighted (sunburning) radiation change with respect to the control run. The white areas5

in the figure at high latitudes correspond to times when the sun has not risen above
the horizon and therefore no solar radiation reaches the Earth’s surface. As expected,
there is a good correlation between the UV radiation and the ozone losses shown in
Fig. 14, with UV radiation in summer being up to 50 % higher than in the control run.
The smallest changes are seen in the latitudinal band around 20◦, where changes in10

UV are less than 10 % and a recovery is already achieved by the end of the second
year. Most noteworthy is the situation at middle latitudes, around 40◦ to 60◦. As can be
seen from the figure, the UV enhancements during the summer months are up to 40 %
relative to the control run, indicating high UV levels with significant adverse effects
on human health, plants and the biosphere in general. At latitudes above 60◦, these15

summer increases can reach 50 %.
Interestingly, one, at first sight contradictory, picture is observed during the first 4 yr

in the winter months at these latitudes. While ozone levels remain below those of the
control run, the UV levels are also lower than in the control run. Indeed, soot particles
are absorbing a significant part of the solar UV radiation due to the long slant path20

through the atmosphere, overcompensating the missing ozone in the atmosphere. This
behavior is less pronounced in the Southern Hemisphere, where less soot is deposited
at high latitudes. Furthermore, this effect gradually diminishes as the soot particles are
removed from the atmosphere. While lower UV levels are generally seen as beneficial,
in winter time at middle to high latitudes they also lead to a reduced ability of the body25

to produce vitamine D, which is essential to human health (Holick, 2004).
The overall situation for UV radiation is remarkable. While for most of the year UV

levels have dramatically increased due to the depleted total ozone, the UV levels in
the winter time are significantly reduced by up to 30 % when they are actually most
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needed for vitamin D production. The overall conclusion is that while the soot particles
are not able to compensate the large ozone losses in the summer months, they over-
compensate the ozone losses in winter, leading to reduced UV levels and therefore
exacerbating the vitamin D problem in this period of the year (Webb and Engelson,
2006).5

5 Conclusions

The model simulations presented here largely confirm the results presented in Mills
et al. (2008) and Robock et al. (2007a). When we prescribe the soot fields provided
by Mills et al. (2008) in the SOCOL3 model, the atmospheric heating found by Mills
et al. (2008) is almost exactly reproduced. This indicates that both models, SOCOL310

and WACCM3, calculate similar radiative effects of the soot. When SOCOL3 is allowed
to transport the soot independently, the initial reduction of the mass of soot in the first
days and weeks of the simulation is larger than in Mills et al. (2008). This is most likely
due to differences in the applied parameterizations of wet soot removal. Nevertheless,
the simulated atmospheric heating, ozone loss, and recovery times are still similar to15

that found by Mills et al. (2008), despite the slightly lower soot burden. A further 5 Tg
model run with a particle diameter of 200 nm rather than 100 nm led to a slightly faster
removal of soot from the atmosphere. However, temperature changes and ozone loss
were largely unaffected by this doubling of the particle size.

There are substantial uncertainties in the calculation of the likely soot emissions20

(Toon et al., 2007), particularly in the assumptions regarding fuel loadings and the
targeting of weapons. While the fuel loadings are calculated based on western cities,
where the data for such calculations is more readily available, it is not clear exactly
how different the loadings are in other countries. Further, reduced soot emissions may
come about as military targets are included in the attack, rather than only the most pop-25

ulated areas. To deal with these uncertainties we performed several model runs with
soot emissions ranging from 1 to 12 Tg. In the 1 Tg case, atmospheric heating and the
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surface cooling is greatly reduced, but the effects of the soot on atmospheric ozone are
still obvious. The cooling of the Earth’s surface is accompanied by a severe reduction
in global precipitation, leading to unfavorable climatic conditions for agriculture. Even
though the climatic changes after the emission of 1 Tg of soot seem to be less disas-
trous, one exceptionally cold and dry year might be enough to reduce harvests in large5

parts of the world, since modern grains are highly sensitive to changing environmental
conditions (Robock, 2010). While surface temperture and precipitation changes scale
almost linearly with the soot burden, at least within the range of our emission scenar-
ios, simulated ozone losses show a saturation effect, which is on the one hand related
to a non-linear temperature dependence of the relevant chemical reaction rates, and10

on the other hand to a “self-healing” effect of stratospheric ozone.
A further interesting result of the present simulations is the strong increase in sea

ice coverage over both hemispheres. Ice feedback effects are expected to prolong
and enhance the climatic response to the soot emissions. Robock et al. (2007a) did
not report similar sea ice increases in their model simulations. A prolonged sea ice15

coverage would have strong impact on shipping routes and, for example, global food
and fuel supply, especially in the Northern Hemisphere.

The climatic effects of massive soot injections from firestorms after a nuclear con-
flict are similar to those after large volcanic eruptions (for a review article on climatic
effects of volcanic erutions see Robock, 2000, and references therein), which inject20

large amounts of sulfur into the atmosphere. In both cases the additional stratospheric
aerosol leads to stratospheric heating and, in general, cooling at the surface. The lower
surface temperatures result in reduced precipitation, especially in the tropics. For large
tropical volcanic eruptions a winter warming over northern hemispheric continents has
been observed, which is caused by an enhanced meridional temperature gradient be-25

tween equator and pole, leading to a strengthening of the polar vortex and a NAO-
like circulation pattern. A similar effect is found in our model results for the first two
winters after the emission of 1 Tg of soot. Besides the climatic effects both volcanic
sulfate aerosol and soot aerosol have the potential to change stratospheric chemistry.
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The stratospheric warming accelerates catalytic ozone depletion. While sulfate aerosol
from volcanic eruptions furthermore provide surfaces for heterogeneous reactions that
lead to ozone destruction, this is not the case for soot aerosol.

Nuclear conflicts remain the greatest immediate threat to the health and welfare of
human mankind, not only to the people of the conflicting nations, but to the whole globe5

(Ruff and Helfand, 2012). The climatic consequences of a nuclear war, i.e. cold, dark
and dry environmental conditions as well as increased UV radiation at the Earth’s sur-
face, would cause massive reductions in agricultural production due to shorter growing
seasons and delayed maturation of crops, resulting in mass starvation for most of the
world’s population, especially in an era of increasing globalisation of markets. Besides10

the disruption of food supplies, people would suffer from many other threats like high
levels of radioactive contamination, enhanced UV radiation, psychological stress, epi-
demics, and the lack of medical care (Robock, 2010). Therefore, concerted political
efforts are necessary to agree on a complete nuclear disarmament and to abolish this
existential threat caused by nuclear weapons.15
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Table 1. Summary of assumed soot emission scenario (same as in Toon et al., 2007).

Geographic region India vs. Pakistan
Number of warheads 50 at 15 kt each (“Hiroshima size”)
Targeting Main population centres attacked
Burnt area per bomb 13 km2 (same as in Hiroshima)
Population density 20 000 personskm−2

Fuel loading 11 tonsperson−1

Average soot emission factor 0.016 g(soot)g(fuel)−1

Diameter of soot particles 100 nm, 200 nm
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Table 2. Summary of performed model simulations.

Scenario Soot Mass [Tg] Soot particle diameter [nm]

CTRL – –
Prescribed 5 100
Exp1 1 100
Exp2 2 100
Exp5_100 5 100
Exp5_200 5 200
Exp7 7 100
Exp12 12 100
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Table 3. Comparison of winter (DJF, first year) temperature changes for specific regions.

Run American corn belt Western Europe

Robock et al. (2007a) −1 to −1.5 ◦C −1 to −3 ◦C
Prescribed −3 to −7 ◦C −1 to −3 ◦C
Exp5_100 −3 to −7 ◦C −3 to −7 ◦C
Exp5_200 −5 to −9 ◦C −1 to −3 ◦C
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Fig. 1. Temporal evolution of the total mass of atmospheric soot for different amounts of soot initially
emitted into the upper troposphere. The dahsed black line indicates the results of Mills et al. (2008).
The other lines show SOCOL results, including radiative feedback. Upper Panel: First 45 days after soot
emission. Lower panel: 11 years of simulation. The mass e-folding time of the atmospheric soot burden
after the initial wash-out is indicated by stars.
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Fig. 1. Temporal evolution of the total mass of atmospheric soot for different amounts of soot
initially emitted into the upper troposphere. The dahsed black line indicates the results of Mills
et al. (2008). The other lines show SOCOL results, including radiative feedback. Upper panel:
first 45 days after soot emission. Lower panel: 11 yr of simulation. The mass e-folding time of
the atmospheric soot burden after the initial wash-out is indicated by stars.
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Fig. 2. Vertical soot distributions 15 days after the emission for various scenarios (Exp1, Exp2, Pre-
scribed, Exp5 100, Exp7, Exp12). The distributions show the zonally averaged soot mass mixing ratio
[10−9kg/kg] as function of latitude and altitude.

28

Fig. 2. Vertical soot distributions 15 days after the emission for various scenarios (Exp1, Exp2,
Prescribed, Exp5_100, Exp7, Exp12). The distributions show the zonally averaged soot mass
mixing ratio [10−9kgkg−1] as function of latitude and altitude.
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a) b)

c) d)

Fig. 3. Change in global mean temperature [K] as a function of altitude and time. a) Exp1, b) Prescribed
run, c) Exp5 100, d) Exp12.
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Fig. 3. Change in global mean temperature [K] as a function of altitude and time. (a) Exp1,
(b) Prescribed run, (c) Exp5_100, (d) Exp12.
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Fig. 4. Mean surface temperature changes [K] as function of time, globally averaged (top) and averaged
between 1.4◦ N and 60◦ N (bottom). The black diamonds in the upper panel indicate the global mean
temperature changes in May of each year for the 5 Tg case by Robock et al. (2007a, their Fig. 3).
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Fig. 4. Mean surface temperature changes [K] as function of time, globally averaged (top) and
averaged between 1.4◦ N and 60◦ N (bottom). The black diamonds in the upper panel indicate
the global mean temperature changes in May of each year for the 5 Tg case by Robock et al.
(2007a, their Fig. 3).
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Fig. 5. Surface temperature changes [K] averaged for June, July, and August of the second year following
the soot injection for Exp1, Exp2, Prescribed, Exp5 100, Exp7, and Exp12.
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Fig. 5. Surface temperature changes [K] averaged for June, July, and August of the second
year following the soot injection for Exp1, Exp2, Prescribed, Exp5_100, Exp7, and Exp12.
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Fig. 6. Same as Figure 5, but averaged for December, January, and February of the second year.
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Fig. 6. Same as Fig. 5, but averaged for December, January, and February of the second year.
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Fig. 7. Changes in total sea ice coverage [%] for the latitude band 45◦ N to 90◦ N (upper panel), and
45◦ S to 90◦ S (lower panel) as function of time.
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Fig. 7. Changes in total sea ice coverage [%] for the latitude band 45◦ N to 90◦ N (upper panel),
and 45◦ S to 90◦ S (lower panel) as function of time.
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Fig. 8. Fractional sea ice coverage over the northern hemisphere in March of year 3 after the soot
emission.
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Fig. 8. Fractional sea ice coverage over the Northern Hemisphere in March of year 3 after the
soot emission.
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Fig. 9. Fractional sea ice coverage over the southern hemisphere in October of year 3 after the soot
emission.
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Fig. 9. Fractional sea ice coverage over the Southern Hemisphere in October of year 3 after
the soot emission.
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Fig. 10. Global mean precipitation changes [mm/day] as function of time. The black diamonds in the
upper panel indicate the global mean percipitation changes in May of each year for the 5 Tg case by
Robock et al. (2007a, their Fig. 3).

Fig. 11. Evolution of global mean temperature [K] (left) and precipitation changes [mm/day] (right) as
function of total soot burden [Tg], for Exp1 (green), Exp2 (brown), Exp5 100 (red), Exp5 200 (blue),
Exp7 (magenta) and Exp12 (orange).
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Fig. 10. Global mean precipitation changes [mmday−1] as function of time. The black diamonds
in the upper panel indicate the global mean percipitation changes in May of each year for the
5 Tg case by Robock et al. (2007a, their Fig. 3).
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Fig. 10. Global mean precipitation changes [mm/day] as function of time. The black diamonds in the
upper panel indicate the global mean percipitation changes in May of each year for the 5 Tg case by
Robock et al. (2007a, their Fig. 3).

Fig. 11. Evolution of global mean temperature [K] (left) and precipitation changes [mm/day] (right) as
function of total soot burden [Tg], for Exp1 (green), Exp2 (brown), Exp5 100 (red), Exp5 200 (blue),
Exp7 (magenta) and Exp12 (orange).
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Fig. 11. Evolution of global mean temperature [K] (left) and precipitation changes [mmday−1]
(right) as function of total soot burden [Tg], for Exp1 (green), Exp2 (brown), Exp5_100 (red),
Exp5_200 (blue), Exp7 (magenta) and Exp12 (orange).
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Fig. 12. Precipitation changes [mm/day] averaged for June, July, and August of the second year follow-
ing the soot injection for Exp1, Exp2, Prescribed, Exp5 100, Exp7, and Exp12.
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Fig. 12. Precipitation changes [mmday−1] averaged for June, July, and August of the second
year following the soot injection for Exp1, Exp2, Prescribed, Exp5_100, Exp7, and Exp12.
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Fig. 13. Same as Figure 12, but averaged for December, January, and February of the second year.
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Fig. 13. Same as Fig. 12, but averaged for December, January, and February of the second
year.

12131

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/12089/2013/acpd-13-12089-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/12089/2013/acpd-13-12089-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 12089–12134, 2013

Climate and
chemistry effects of a

regional scale
nuclear conflict

A. Stenke et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 14. Zonally averaged total column ozone deviations from the control simulation [%] as a function
of latitude versus time for the simulations Exp1, Exp2, Prescribed, Exp5 100, Exp7, and Exp12.
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Fig. 14. Zonally averaged total column ozone deviations from the control simulation [%] as
a function of latitude versus time for the simulations Exp1, Exp2, Prescribed, Exp5_100, Exp7,
and Exp12.
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Fig. 15. Zonal mean total column ozone column [DU] averaged over the second year following the nu-
clear war as a function of geographical latitude for the CTRL simulation (grey) and the soot simulations
(color code see legend). The dashed black line shows results by Mills et al. (2008, their Fig. 3). The
dotted line indicates ozone hole conditions (220 DU).

40

Fig. 15. Zonal mean total column ozone column [DU] averaged over the second year following
the nuclear war as a function of geographical latitude for the CTRL simulation (grey) and the
soot simulations (color code see legend). The dashed black line shows results by Mills et al.
(2008, their Fig. 3). The dotted line indicates ozone hole conditions (220 DU).
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Fig. 16. The zonally averaged ratio between the erythemally weighted UV irradiance at local noon for
Exp5 100 and the CTRL run, for the first 5 years of the model run. No data is available during the polar
night when the sun is below the horizon.
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Fig. 16. The zonally averaged ratio between the erythemally weighted UV irradiance at local
noon for Exp5_100 and the CTRL run, for the first 5 yr of the model run. No data is available
during the polar night when the sun is below the horizon.
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